PMV-Algebras of Matrices
نویسنده
چکیده
MV-algebras of various kinds have been heavily investigated in the recent times. The isomorphism theorems between the MV-algebras and the interval MV-algebras in the corresponding lattice-ordered algebraic structures support research that utilizes the established properties of these structures in order to obtain specific information about the initial MV-algebras. In this talk we will discuss a concrete shape of any product MV-algebra that naturally embeds in a real algebra of matrices. We will use the structure theorem about lattice-ordered real algebras of matrices. In particular we establish that PMValgebras in concern are precisely the intervals between the zero matrix and a conjugate of a certain positive matrix.
منابع مشابه
Radical of $cdot$-ideals in $PMV$-algebras
In this paper, we introduce the notion of the radical of a $PMV$-algebra $A$ and we charactrize radical $A$ via elements of $A$. Also, we introduce the notion of the radical of a $cdot$-ideal in $PMV$-algebras. Several characterizations of this radical is given. We define the notion of a semimaximal $cdot$-ideal in a $PMV$-algebra. Finally we show that $A/I$ has no nilpotent elemen...
متن کاملGeneralized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کاملON SELBERG-TYPE SQUARE MATRICES INTEGRALS
In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.
متن کاملOn Prime A-ideals in Mv -modules
In 2003, Di Nola, et.al. introduced the notion of MV -modules over a PMV algebra and A-ideals in MV -modules [5]. These are structures that naturally correspond to lu-modules over lu-rings [5]. Recall that an lu-ring is a pair (R,u), where (R, ⊕, ·, 0, ≤) is an l-ring and u is a strong unit of R (i.e, u is a strong unit of the underlying l-group) such that u · u ≤ u and l-ring is a structure (R...
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multiple-Valued Logic and Soft Computing
دوره 16 شماره
صفحات -
تاریخ انتشار 2010